
Cloud and Big Data Summer
School, Stockholm, Aug., 2015
Jeffrey D. Ullman

1. Easy parallel programming.
2. Invisible management of hardware and

software failures.
3. Easy management of very-large-scale data.

2

 A MapReduce job starts with a collection of inputs
of a single type.

 Apply a user-written Map function to each input,
in parallel.

 Mapper = application of the Map function to a single
input.

 Usually many mappers are grouped into a Map Task.

 The output of the Map function is a set of 0, 1, or
more key-value pairs.

 The system sorts all the key-value pairs by key,
forming key-(list of values) pairs.

 Another user-written function, the Reduce
function, is applied to each key-(list of values).

 Application of the Reduce function to one key and its
list of values is a reducer.

 Often, many reducers are grouped into a Reduce Task.

 Each reducer produces some output, and the
output of the entire job is the union of what is
produced by each reducer.

4

5

Mappers Reducers

Input Output

key-value
 pairs

 We have a large file of documents, which are
sequences of words.

 Count the number of times each distinct word
appears in the file.

map(key, value):
// key: document ID; value: text of document
 FOR (each word w in value)
 emit(w, 1);

reduce(key, value-list):
// key: a word; value-list: a list of integers
 result = 0;
 FOR (each integer v on value-list)
 result += v;
 emit(result);

Expect to be all 1’s,
but “combiners” allow
local summing of
integers with the same
key before passing
to reducers.

8

 MapReduce is designed to deal with compute
nodes failing to execute a Map task or Reduce
task.

 Re-execute failed tasks, not whole jobs.
 Key point: MapReduce tasks have the blocking

property: no output is used until task is
complete.

 Thus, we can restart a Map task that failed
without fear that a Reduce task has already
used some output of the failed Map task.

1. Execution time of the mappers and reducers.
2. Communication cost of transmitting the

output of the mappers to the location of the
proper reducer.

 Usually, many compute nodes handle both sorts of
tasks in parallel, so there is little chance that the
source and destination of a key-value pair are the
same.

 Often, communication cost dominates.

9

 A real story from Stanford’s CS341 data-mining
project class.

 Data consisted of records for 3000 drugs.

 List of patients taking, dates, diagnoses.

 About 1M of data per drug.

 Problem was to find drug interactions.

 Example: two drugs that when taken together
increase the risk of heart attack.

 Must examine each pair of drugs and compare
their data.

11

 The first attempt used the following plan:

 Key = set of two drugs {i, j}.

 Value = the record for one of these drugs.

 Given drug i and its record Ri, the mapper
generates all key-value pairs ({i, j}, Ri), where j is
any other drug besides i.

 Each reducer receives its key and a list of the
two records for that pair: ({i, j}, [Ri, Rj]).

12

13

Mapper
for drug 2

Mapper
for drug 1

Mapper
for drug 3

Drug 1 data {1, 2}
Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data {1, 3}

Drug 2 data {1, 2}

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data {2, 3}

14

Mapper
for drug 2

Mapper
for drug 1

Mapper
for drug 3

Drug 1 data {1, 2}
Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data {1, 3}

Drug 2 data {1, 2}

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data {2, 3}

15

Drug 1 data {1, 2} Reducer
for {1,2}

Reducer
for {2,3}

Reducer
for {1,3}

Drug 1 data

Drug 2 data

Drug 2 data {2, 3}

Drug 3 data {1, 3}

Drug 3 data

 3000 drugs
 times 2999 key-value pairs per drug
 times 1,000,000 bytes per key-value pair
 = 9 terabytes communicated over a 1Gb

Ethernet
 = 90,000 seconds of network use.

16

 The team grouped the drugs into 30 groups of
100 drugs each.

 Say G1 = drugs 1-100, G2 = drugs 101-200,…, G30 =
drugs 2901-3000.

 Let g(i) = the number of the group into which drug i
goes.

17

 A key is a set of two group numbers.
 The mapper for drug i produces 29 key-value

pairs.

 Each key is the set containing g(i) and one of the
other group numbers.

 The value is a pair consisting of the drug number i
and the megabyte-long record for drug i.

18

 The reducer for pair of groups {m, n} gets that
key and a list of 200 drug records – the drugs
belonging to groups m and n.

 Its job is to compare each record from group m
with each record from group n.

 Special case: also compare records in group n with
each other, if m = n+1 or if n = 30 and m = 1.

 Notice each pair of records is compared at
exactly one reducer, so the total computation is
not increased.

19

 The big difference is in the communication
requirement.

 Now, each of 3000 drugs’ 1MB records is
replicated 29 times.

 Communication cost = 87GB, vs. 9TB.

20

1. A set of inputs.

 Example: the drug records.

2. A set of outputs.

 Example: one output for each pair of drugs, telling
whether a statistically significant interaction was
detected.

3. A many-many relationship between each
output and the inputs needed to compute it.

 Example: The output for the pair of drugs {i, j} is
related to inputs i and j.

22

23

Drug 1

Drug 2

Drug 3

Drug 4

Output 1-2

Output 1-3

Output 2-4

Output 1-4

Output 2-3

Output 3-4

24

 =

i

j j

i

 Reducer size, denoted q, is the maximum
number of inputs that a given reducer can have.

 I.e., the length of the value list.

 Limit might be based on how many inputs can
be handled in main memory.

 Or: make q low to force lots of parallelism.

25

 The average number of key-value pairs created
by each mapper is the replication rate.

 Denoted r.

 Represents the communication cost per input.

26

 Suppose we use g groups and d drugs.
 A reducer needs two groups, so q = 2d/g.
 Each of the d inputs is sent to g-1 reducers, or

approximately r = g.
 Replace g by r in q = 2d/g to get r = 2d/q.

27

Tradeoff!
The bigger the reducers,
the less communication.

 What we did gives an upper bound on r as a
function of q.

 A solid investigation of MapReduce algorithms
for a problem includes lower bounds.

 Proofs that you cannot have lower r for a given q.

28

 A mapping schema for a problem and a reducer
size q is an assignment of inputs to sets of
reducers, with two conditions:

1. No reducer is assigned more than q inputs.

2. For every output, there is some reducer that
receives all of the inputs associated with that
output.

 Say the reducer covers the output.

 If some output is not covered, we can’t compute that
output.

29

 Every MapReduce algorithm has a mapping
schema.

 The requirement that there be a mapping
schema is what distinguishes MapReduce
algorithms from general parallel algorithms.

30

 d drugs, reducer size q.
 Each drug has to meet each of the d-1 other

drugs at some reducer.
 If a drug is sent to a reducer, then at most q-1

other drugs are there.
 Thus, each drug is sent to at least (d-1)/(q-1)

reducers, and r > (d-1)/(q-1).

 Or approximately r > d/q.

 Half the r from the algorithm we described.
 Better algorithm gives r = d/q + 1, so lower

bound is actually tight.
31

 Outputs = a subset of the pairs of inputs.
 Example: HD1.

 Inputs = bit strings of length b.

 Outputs = all pairs of inputs that are at Hamming
distance 1.

 Hamming distance = number of positions in which strings
differ.

 Known upper and lower bound: r = b/log2q.

33

34

00

01

10

11

Inputs Outputs

Note pairs (00, 11) and (01, 10) are NOT outputs.

(00, 01)

(00, 10)

(11, 01)

(11, 10)

 Some particular some-pairs problems have
really good solutions.

 Example: HD1

 But we’re looking for a single algorithm that
solves any some-pairs problem and takes
advantage of the fact that not all pairs of inputs
are outputs.

35

 Let there be n inputs and m outputs.
 Assume all pairs are outputs, and use the all-

pairs solution.
 Gives us r = n/q, independent of m.

36

 For each of the m outputs, create a reducer for
only the two inputs associated with that
output.

 Requires only q = 2.
 Gives us replication rate r = 2m/n.

37

 Theorem: For any n, m, and q, there is a some-
pairs problem whose replication rate is
“almost” as large as min(m/n, n/q).

 More precisely, r > min(εm/n, (n/q)1-ε) for any

ε > 0 .
 Note: Most common problems will have better

solutions; this lower bound only limits what a
general-purpose algorithm can do.

38

 MapReduce is an important tool for failure-
resistant parallel computation.

 The theory of algorithm design for MapReduce
is in its infancy.

 Involves the tradeoff between how much work to
assign to a reducer and the amount of
communication needed.

 Many open questions remain, e.g., “Hamming-
distance 2.”

39

